skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flombaum, Pedro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Grasslands represent one of the largest vegetation types on Earth and their existence is determined by soil-water scarcity that in turn depends on precipitation and temperature. This vegetation type harbors a high diversity of plant species that mostly occurs at fine spatial scales because grasslands tend to be structurally simpler at coarser scales. Grassland species richness has strong and positive effects on primary production as a result of increasing niche complementarity with increasing diversity. Grasslands are among the most vulnerable ecosystems in the world because their diversity is threatened by human activity, mostly as a consequence of conversion into croplands. 
    more » « less
  2. Abstract Climate change is projected to modify the physical and chemical environment of the ocean, but the quantitative impact on the distribution of phytoplankton groups is unclear. Most Earth System Models (ESMs) predict future declines of phytoplankton in low latitude waters, contradicting observations showing that picophytoplankton can reach high abundance in warm waters. Here, we used a historic and three climate scenarios along with quantitative niche models to projectProchlorococcus,Synechococcus, and picoeukaryotic phytoplankton distributions for the year 2100. First, we found global responses with up to 50% and 9% increase forProchlorococcusandSynechococcusabundances, respectively, and 8% decrease for picoeukaryotic phytoplankton. All groups increased in abundance at low latitude, andSynechococcusand picoeukaryotic phytoplankton showed bands of decreases and increases in mid‐ and high‐latitudes, respectively.Prochlorococcustemporal trends were consistent among ESMs and increased with the strength of the scenario, whileSynechococcusand picoeukaryotic phytoplankton showed mixed results. Second, we evaluated sources of uncertainty associated to future projections. The anthropogenic uncertainty, associated to climate scenarios, increased with time and was relevant forProchlorococcus. The environmental and biological uncertainty, associated to ESMs and niche models, respectively, represented the largest fraction but differed among lineages. Quantifying uncertainties is key because the predicted differences in the future distribution and abundance can have large‐scale consequences on ocean ecosystem functioning. 
    more » « less
  3. Abstract Marine picophytoplankton is the most abundant photosynthetic group on Earth; however, it is still underrepresented in dynamic ecosystem models. Major constraints for understanding its role in the ecosystem at a global scale are sparse data and lack of a baseline description of its distribution. Here, we present three datasets to assess the global abundance of the principal groups of picophytoplankton,Prochlorococcus,Synechococcus, and picoeukaryotic phytoplankton: (1) a compilation of 109,045 field observations with ancillary environmental data, (2) a global monthly climatology of 1° grids from 0 to 200 m, and (3) four climate scenarios projections, from the Coupled Model Intercomparison Project 5, spanning years 1901 to 2100. Together this set of observational and modeled data can improve our understanding of the role of picophytoplankton in the global ecosystem. 
    more » « less